Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats
نویسندگان
چکیده
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36) and Ciliao (BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.
منابع مشابه
Effect of Trehalose on Neurocan and Neural-Glial Antigen 2 Genes Expression in Rats with Spinal Cord Injury
Background: Chondroitin sulfate proteoglycans (CSPGs) are the major cause of axonal regeneration failure at the site of lesion in spinal cord injury (SCI). Inflammation is believed to stimulate the upregulation of CSPGs expression. Recent evidence showed that trehalose reduces the development of inflammation in SCI. The aim of this study was to investigate the effect of trehalo...
متن کاملChanges in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine
Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...
متن کاملP130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases
Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...
متن کاملCombination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone
Resistance mechanisms of rho-associated kinase (ROCK) inhibitors are associated with the enhanced expression of cyclooxygenase-2 (COX-2). The therapeutic effects of ROCK on nervous system diseases might be enhanced by COX-2 inhibitors. This study investigated the synergistic effect of the combined use of the ROCK inhibitor fasudil and a COX-2 inhibitor celecoxib on spinal cord injury in a rat m...
متن کاملEffects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017